Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms.
نویسندگان
چکیده
Mutations in the microtubule-associated protein tau gene have been linked to neurofibrillary tangle (NFT) formation in several neurodegenerative diseases known as tauopathies; however, no tau mutations occur in Alzheimer's disease, although this disease is also characterized by NFT formation and cell death. Importantly, the mechanism of tau-mediated neuronal death remains elusive. Aged mice expressing nonmutant human tau in the absence of mouse tau (htau mice) developed NFTs and extensive cell death. The mechanism of neuron death was investigated in htau mice, and surprisingly, the presence of tau filaments did not correlate directly with death within individual cells, suggesting that cell death can occur independently of NFT formation. Our observations show that the mechanism of neurodegeneration involved reexpression of cell-cycle proteins and DNA synthesis, indicating that nonmutant tau pathology and neurodegeneration may be linked via abnormal, incomplete cell-cycle reentry.
منابع مشابه
Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملNeurogenesis and cell cycle-reactivated neuronal death during pathogenic tau aggregation
The aim of the present study was to investigate the relation between neurogenesis, cell cycle reactivation and neuronal death during tau pathology in a novel tau transgenic mouse line THY-Tau22 with two frontotemporal dementia with parkinsonism linked to chromosome-17 mutations in a human tau isoform. This mouse displays all Alzheimer disease features of neurodegeneration and a broad timely res...
متن کاملEffects of Over-Expression of LOC92912 Gene on Cell Cycle Progression
Background: We had previously identified the genes involved in squamous cell carcinoma of the head and neck using differential display and DNA microarray techniques. We also reported the first analytical study on a novel human gene called LOC92912, which was identified by differential display as a gene up-regulated in such carcinomas. LOC92912, which is a putative member of the E2 ubiquitin con...
متن کاملP96: Progress in the Treatment of Alzheimer’s Disease by Gene Therapy
Alzheimer’s disease (AD) is a progressive neurological disorder characterized by the aggregation of two proteins, amyloid-b and hyper phosphorylated tau, and by neuronal and synaptic loss. The progress of gene-modified cells and stem cells is a particularly promising therapeutic method for AD. Gene-Modified Cell-Based Therapy for AD prior to transplantation can be beneficial for increasin...
متن کاملAccelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice.
Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 22 شماره
صفحات -
تاریخ انتشار 2005